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Abstract—Existing approaches to nonrigid structure from motion assume that the instantaneous 3D shape of a deforming object is a

linear combination of basis shapes. These bases are object dependent and therefore have to be estimated anew for each video

sequence. In contrast, we propose a dual approach to describe the evolving 3D structure in trajectory space by a linear combination of

basis trajectories. We describe the dual relationship between the two approaches, showing that they both have equal power for

representing 3D structure. We further show that the temporal smoothness in 3D trajectories alone can be used for recovering nonrigid

structure from a moving camera. The principal advantage of expressing deforming 3D structure in trajectory space is that we can

define an object independent basis. This results in a significant reduction in unknowns and corresponding stability in estimation. We

propose the use of the Discrete Cosine Transform (DCT) as the object independent basis and empirically demonstrate that it

approaches Principal Component Analysis (PCA) for natural motions. We report the performance of the proposed method,

quantitatively using motion capture data, and qualitatively on several video sequences exhibiting nonrigid motions, including piecewise

rigid motion, partially nonrigid motion (such as a facial expressions), and highly nonrigid motion (such as a person walking or dancing).

Index Terms—Nonrigid structure from motion, 3D reconstruction, motion and tracking.

Ç

1 INTRODUCTION

TO what extent is it possible to infer the 3D structure of a
deforming object from the motion of its salient features

in a video sequence? Johansson, in his famous Moving
Light Display experiment [1], demonstrated that if humans
recognize an object, they can perceive structure deforma-
tions correctly. Johansson’s study, for the first time, showed
that recovering the 3D structure of a deforming object is
possible, provided that the deforming object is recognized.
In this paper, we show that the temporal smoothness of
points in 3D, in the absence of recognition, is also sufficient
to reconstruct the structure of a deforming object from a
moving camera.

Temporal smoothness can be exploited to express
trajectories as a linear combination of basis trajectories. This
representation is illustrated in Fig. 1; each trajectory
corresponds to a salient feature on the mouth of a smiling
actor. We represent each trajectory by a point in the linear
space of trajectories spanned by a trajectory basis. We show
that this representation is a dual to the shape basis
representation of Bregler et al. [2]. The key idea in [2] is that
observed shapes can be represented as a linear combination
of a few basis shapes, as illustrated in Fig. 1c. The duality

between shape and trajectory basis arises because the
trajectory and the shape basis span the column and row
space of the same matrix representing nonrigid structure.
Compactness in one automatically imposes compactness in
the other. We will show that the role of the bases and their
coefficients is swapped between these two representations;
the shape basis and shape coefficients become the trajectory
coefficients and trajectory basis, respectively, in the dual
space and vice versa.

Although, both shape and trajectory are alternate ways of
looking at the nonrigid structure, there is a key advantage to
taking the trajectory approach—the trajectory basis can be
predefined in an object independent way. Consider a
deformable object being acted upon by a force. The extent
of its deformation is limited by the force that can be applied.
Hence, a tree swaying in the wind or a person walking cannot
arbitrarily and randomly deform; the trajectories of their
points are a function of the force of the wind and the flexing
of muscles, respectively. Deformations are therefore con-
strained by the physical limits of the actuation to remain
incremental, not random, across time. As this property is
largely ubiquitous, a basis can be defined in a trajectory space
that is object independent.

The incremental nature of the trajectories suggests that
they should be well modeled by low-order Markov chains.
Moreover, the temporal smoothness in trajectories implies a
high auto-correlation in a small time window. It is widely
known that for highly correlated data, the Discrete Cosine
Transform (DCT) has excellent energy compaction [3]. It has
further been shown that for a first-order Markov model, the
basis computed by Principal Component Analysis (PCA)
approaches DCT when correlation approaches unity or the
signal length approaches infinity [4]. Empirically, our
experiments on the large CMU motion capture data set
show that for motion trajectories, the basis computed by
PCA approaches the DCT basis. We conclude from
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quantitative and qualitative experiments that the DCT basis
serves well as an object independent trajectory basis.

Using DCT as an object independent basis for nonrigid
structure representation, we are able to propose a new
algorithm for recovering structure from motion. An im-
portant consequence of structure representation in the space
of a priori basis is a significant reduction in the number of
unknowns. This allows us to handle more nonrigidity of
deformation than state-of-art methods such as [5] and [6]. In
fact, most previous results consider deformations which
have a large rigid component, such as talking-head videos
or the motion of a swimming shark [2], [5], [6], [7], [8], [9],
[10], [11]. To the best of our knowledge, we are the first to
show reasonable reconstructions of highly nonrigid mo-
tions, e.g., a person dancing or a group of people moving,
without making object specific assumptions. We observe
and empirically demonstrate that the stability of structure
estimation is linked to the amount of camera motion.
The greater the motion of the camera, the more nonrigid the
structure which can be reconstructed.

2 RELATED WORK

The study of the relationship between 2D image projections
and underlying 3D scenes has a long history over several
centuries in the fields of optics and photogrammetry. The
study of multiview geometry was spurred in the computer
vision community by Longuet-Higgins in [12]. Almost three
decades of section-sequent research is summarized in [13],
[14], [15], investigating various constraints between point
measurements in different images. While the multilinear
relationships described in this body of work greatly
expanded conceptual understanding, in practice the most
successful line of investigation for 3D reconstruction has
been the application of factorization approaches to structure
recovery beginning with the seminal work by Tomasi and
Kanade in [16]. The same formulation was independently
proposed by Kontsevich et al. in [17]. The key observation
in [16], [17] was the rank 3 theorem. It stated that a 2F � P
measurement matrix W, containing the image coordinates
of P points across F frames,

W ¼

u11 . . . u1P

v11 . . . v1P

..

. ..
.

uF1 . . . uFP
vF1 . . . vFP

2
666664

3
777775
; ð1Þ

has a rank of 3 if orthographic projection is assumed and
image coordinates are taken with respect to a common
convention of origin. A numerically stable algorithm was
proposed to exploit this rank constraint for structure
reconstruction, and the orthonormality of rotations was
used to estimate metric structure. The vast majority of
research into structure from motion, including factorization
approaches, assumes that scene is stationary and equiva-
lently considers either multiple static cameras or a single
moving camera. These methods cannot be used to directly
recover the structure of dynamic scenes or the scene
independent relative motion of two (or more) cameras.

The principal challenge in reconstructing dynamic
structure from a moving camera is that the problem is ill-
posed if the dynamics of the structure is unconstrained, i.e.,
if the structure at time tþ 1 is independent of the structure
at t. The groundbreaking 1973 study by Johansson in [1]
demonstrated that in interpreting structure from motion,
the human visual system has the ability to reconstruct time-
varying structures. Within the computer vision community,
the design of algorithms to reconstruct nonrigidly deform-
ing structure began in earnest in the 1980s, investigating
constraints like maximal rigidity, isometry, symmetry, and
linear representations in low dimensions in [18], [19], [20],
[21]. During the 1990s, the success of the factorization-based
structure from motion algorithm initiated investigation into
leveraging similar ideas toward nonrigid structure from
motion, with independently moving rigid objects [22], [23],
[24], [25], [26]. A more general model of nonrigid structure
from motion was proposed by Bregler et al. in [2]. They
modeled the deformations of a nonrigid object using a low-
dimensional set of linear basis, which they called the shape
basis, reminiscent of the model of [21]. The structure at a
time instant t was represented by arranging the 3D
locations of the P points in a matrix SðtÞ 2 IR3�P :
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Fig. 1. 3D features on a smiling mouth: A comparison of shape and trajectory space. (a) In approaches that represent the time varying structure in
shape space, all 3D points observed at one time instant are projected onto a single point in the shape space. S1; S2; . . . ; SK each represent a shape
basis vector. (b) In our approach, we represent the time varying structure in trajectory space, where a 3D point’s trajectory over time is projected to a
single point in the trajectory space. �1; �2; . . . ; �K each represent a trajectory basis vector. P points observed across F frames are expressed as F
projected points in shape space and 3P points in trajectory space.



SðtÞ ¼
Xt1 XtP

Yt1 � � � YtP
Zt1 ZtP

2
4

3
5:

The complete time varying structure was represented by
concatenating these instantaneous structures as

S3F�P ¼ ½Sð1ÞTSð2ÞT � � �SðF ÞT �T : ð2Þ

In [2], each instantaneous shape matrix SðtÞ was approxi-
mated by a weighted sum of K basis shapes,

SðtÞ ¼
XK
j¼1

!tjB
j; ð3Þ

where Bj 2 IR3�P is a basis shape and !tj is the coefficient of
that basis shape. Assuming that K shape basis can capture
the variation in the object’s deformation, Bregler et al.
described a rank 3K theorem, analogous to the rank 3
theorem in the case of stationary objects.

While this framework was seminal, the algorithm to
estimate the metric structure of the nonrigid object did not
have the stability of the rigid factorization approach of
Tomasi and Kanade [16]. The difference between the two
cases was that in addition to camera motion and structure
information, in the approach of Bregler et al. the shape
bases had to be estimated anew for each object since they
were specific to the observed data. Brand in [8] proposed
several optimization strategies to estimate nonrigid struc-
ture. Xiao et al. in [5] attributed the fragility of the
algorithm to the ambiguity in orthonormality constraints.
They proposed additional constraints, called basis con-
straints, to resolve this ambiguity to get a unique solution.
Torresani et al. [6] proposed a Gaussian prior for the
shape coefficients and solve the optimization using
Expectation Maximization. Bue et al. [27] assumed that
nonrigid shape contained a significant number of points
which behave in a rigid fashion. Bue in [28] introduced
the idea of priors in nonrigid structure from motion.
Bartoli et al. [29] used a smoothness prior on structure
and an ordering prior on the basis, where the smoothness
prior is the closeness of deformations from mean. Yan and
Pollefeys [30], [31] and Tresadern and Reid [32] assumed
that a nonrigid object is articulated. Paladini et al. [33]
proposed an alternating least square approach and
manifold projection technique for nonrigid and articulated
objects. Rabaud and Belongie in [34] showed that
repetitions in the object deformations can be exploited to
estimate shape coefficients, which can further provide a
good estimate for the remaining unknowns in the final
optimization. Akhter et al. in [35] demonstrated that the
fundamental problem in nonrigid structure from motion is
the optimization not the ambiguity of orthonormality
constraints. Investigation has been conducted to extend
nonrigid factorization approaches to perspective camera
models in [36], [37], [38]; however, robust solutions for
handling significant nonrigidity ðK > 2Þ remain elusive.
Recently, Rabaud and Belongie [34] proposed nonlinear
subspace reduction by imposing locally linear subspace
compaction on nonrigid structure [39].

In contrast to this entire corpus of work, which

approximates structure by a shape basis, we propose a

new representation of time varying structure as a collection

of trajectories. An initial framework of the proposed

method was published in [40]. In [40], we not only

demonstrate that a compact trajectory space can be defined,

but also that the basis of this trajectory space can be

predefined, removing a large number of unknowns from

the estimation process altogether. The duality of spatial and

temporal representations has been hinted at earlier in the

literature. Carlsson and Weinshall [41] discussed the

duality between 3D points and projective cameras. Shashua

[42] discussed the duality of the joint image space and the

joint point space in the context of multiview geometry.

Zelnik-Manor and Irani [43] have exploited a similar duality

for an alternate approach to segmenting video sequences.

Ours is the first paper to use this dual representation in the

structure from motion problem and to note that a generic

basis can be defined in trajectory space, which compactly

represents most real trajectories.
We exploit temporal smoothness of trajectories to

predefine the basis. In contrast to earlier constraints

imposed on nonrigid structure from motion, we note that

temporal smoothness is physically motivated and is a

limitation imposed by the actuators causing the nonrigid

motion in deforming object. Torresani et al. proposed a

linear dynamical system to exploit temporal smoothness.

Olsen and Bartoli [44] used temporal smoothness to handle

missing data. However, ours is the first paper to treat

temporal smoothness as a sufficient condition to solve

nonrigid structure from motion. Another distinction of our

paper is that it gives reasonable reconstructions not only for

cases for which specialized methods were proposed, like

multirigid and articulated objects, but also for the cases

which have never been reported before, like a person

dancing or multiple people walking.

3 DUALITY IN 3D STRUCTURE REPRESENTATION

The shape basis representation as given in (3) is one way of

imposing compactness on the nonrigid structure S. Another

way is to look across time and impose compactness on

trajectories. We define the 3D trajectory of the ith point as

T ðiÞ ¼ ½TxðiÞTTyðiÞTTzðiÞT �T , where TxðiÞ ¼ ½X1i; . . . ; XFi�T ,

TyðiÞ ¼ ½Y1i; . . . ; YFi�T , TzðiÞ ¼ ½Z1i; . . . ; ZFi�T are the X, Y ,

and Z coordinates of the ith trajectory. We assume that the

trajectory components can be approximated by a linear

combination of a small number of trajectory basis (see

Figs. 1b and 2) as
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Fig. 2. As described in (4), each trajectory is represented as a linear

combination of K predefined basis trajectories. In this paper, we use the

Discrete Cosine Transform basis to compactly represent trajectories.



TxðiÞ ¼
XK
j¼1

axjðiÞ�j;

TyðiÞ ¼
XK
j¼1

ayjðiÞ�j;

TzðiÞ ¼
XK
j¼1

azjðiÞ�j;

ð4Þ

where �j 2 IRF is a basis trajectory. Although (3) and (4)
show two apparently different approaches to approximate
the nonrigid structure, they are both related. In the
following, we explore the relationship between shape basis
and trajectory basis representation of nonrigid structure.

3.1 Duality Theorem

Let us assume that the nonrigid structure S can be compactly
expressed in terms of K basis shapes, as given in (3). This
relationship can also be written as a matrix multiplication by
vectorizing each of the 3� P instantaneous shapes SðtÞ as a
1� 3P row vector. The nonrigid structure S can be
reformulated as a F � 3P matrix S� as follows:

S� ¼
X11 Y11 Z11 X1P Y1P Z1P

..

.
� � � ..

.

XF1 YF1 ZF1 XFP YFP ZFP

2
64

3
75: ð5Þ

The row space of S� corresponds to the shape space, which,
according to [2], can be compactly represented by K basis
vectors. As the row and column space of a matrix are of
equal dimensions, it follows that the columns of S� are also
spanned by K vectors. We call the column space of this
matrix the trajectory space and note that it enjoys a dual
relationship with the shape space. Specifically, if the time
varying shape of an object can be expressed by a minimum
of K shape basis, then there exist exactly K trajectory basis
vectors that can represent the same time varying shape.
This leads us to the following theorem between the shape
and the trajectory basis.

Theorem 3.1. The shape basis and trajectory basis are dual to
each other.

Proof. In order to prove the theorem, let us assume that the
nonrigid structure lies in a shape space of dimension K,
then we can express S� as a linear combination of shape
basis as follows:

S� ¼ ��B�; ð6Þ

where

�� ¼
!11 � � � !1K

..

.
� � � ..

.

!F1 � � � !FK

2
64

3
75

and

B� ¼
bx1ð1Þ by1ð1Þ bz1ð1Þ bx1ðP Þ by1ðP Þ bz1ðP Þ

..

.
� � � ..

.

bxKð1Þ byKð1Þ bzKð1Þ bxKðP Þ byKðP Þ bzKðP Þ

2
664

3
775:

Each row in B�K�3P represents a shape basis and cij is
the ith shape coefficient of jth shape basis. In order to

relate this representation to the X, Y , and Z coordi-
nates of the ith trajectory, we have to multiply �� with
the ith, P þ ith, and 2P þ ith column of B� as follows:

TxðiÞTyðiÞTzðiÞ
� �

¼
!11 � � � !1K

..

.
� � � ..

.

!F1 � � � !FK

2
664

3
775

bx1ðiÞ by1ðiÞ bz1ðiÞ
..
. ..

. ..
.

bxKðiÞ byKðiÞ bzKðiÞ

2
664

3
775:

ð7Þ

By denoting the jth column in �� as !j, the above
equation can be written as

TxðiÞ ¼
XK
j¼1

bxjðiÞ!j;

TyðiÞ ¼
XK
j¼1

byjðiÞ!j;

TzðiÞ ¼
XK
j¼1

bzjðiÞ!j:

ð8Þ

By comparing (4) and (8), we conclude that the shape
coefficients !j are serving as the trajectory basis and the
components of the shape basis bxjðiÞ, byjðiÞ, and bzjðiÞ
have become the corresponding trajectory coefficients.
The converse can also be shown in a similar way, that is,
(3) can be derived from (8). Hence, the shape and
trajectory representations are dual to each other and
have equal compactness. tu
A consequence of the Duality Theorem is the dual

relationship between coefficients and basis in trajectory and
shape spaces. Specifically, the shape basis and trajectory
basis define two dual spaces and basis in one become
coefficients in the other and vice versa.

3.2 An Illustration of the Duality for SVD Basis

For the illustration of duality between shape and trajectory
representations, we give the example of SVD basis. This basis
has been extensively used in structure from motion literature
because of its effectiveness for structure recovery. In Fig. 3,
we illustrate the duality between trajectory and shape
representation using an example. We compute the SVD
trajectory basis and shape basis for a time-varying 3D
structure, generated through motion capture and normalize
the trajectory coefficients and shape coefficients to unit norm.
The coefficients of one space exactly overlap the basis of the
other, illustrating the validity of duality for this data set.

The dual relationship between SVD trajectory and shape
basis, shown to exist empirically in Fig. 3, can also be
proven formally. In order to reaffirm the Duality Theorem,
we will derive this relationship autonomously. For this
purpose, we consider the covariance matrices for the
trajectory and shape data as �t ¼ S�S�T and �s ¼ S�TS�,
respectively. We denote �t and �t as the matrices of
eigenvectors and eigenvalues of the covariance matrix and
A� as the coefficients of the trajectory data S�. Similarly, we
denote �s, �s, and �� for the shape data S�T . Matrices �t

and �s are assumed to be diagonal. The eigenvalue
equation for the shape and the trajectory covariance
matrices can be written as

�t�t ¼ �t�t; ð9Þ
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�s�s ¼ �s�s: ð10Þ

The shape and trajectory eigenvalues and eigenvectors are
related by the following equations [45]:

�s ¼ S�T�t; ð11Þ

�s ¼ �t: ð12Þ

Once, �t is known, the trajectory coefficients can be found
as A� ¼ �t

TS�. Using (11), this can be simplified as

A� ¼ �s
T : ð13Þ

Similarly, the shape coefficients can be found as ��T ¼
�s

TS�T . Using (11), this can be written as

�� ¼ S��s ¼ S�ðS�T�tÞ;
¼ �t�t:

Using (9), the above equation can be simplified as

�� ¼ �t�t: ð14Þ
Equations (13) and (14) show that SVD basis and coeffi-
cients in trajectory representation are the same as SVD
coefficients and basis for shape representation, respectively.
However, in order to make the norm of eigenvectors equal
to unity, appropriate normalization will be needed. This
confirms the Duality Theorem for SVD basis.

3.3 Dual Representation of the Structure

Given the duality between the shape and trajectory bases, it is
easy to see that nonrigid structure representation using

trajectory basis will also be dual to the one using shape basis
as given in [2], [5]. That is, the trajectory coefficients and
trajectory basis will take the role of the shape basis and shape
coefficients, respectively. Hence, the structure matrix can be
written as a multiplication of an inverse projection matrix
containing trajectory basis and trajectory coefficient matrix as

S3F�P ¼ �3F�3KA3K�P ; ð15Þ

where

� ¼
�11I . . . �1KI

..

. . .
. ..

.

�F1I . . . �FKI

2
64

3
75; A ¼

a1ð1Þ . . . a1ðP Þ
..
.

aKð1Þ . . . aKðP Þ

2
64

3
75:

I is a 3� 3 identity matrix and aiðjÞ ¼ ½axiðjÞ; ayiðjÞ; aziðjÞ�T .
Equation (15) can also be derived directly from (4) and
should be considered a dual of the shape basis representa-
tion of structure given in (6).

Although the representation power of the shape basis
and trajectory basis is equal, the principal benefit of the
trajectory space representation is that the trajectory basis
can be predefined independent of the observed data. This
follows from the observation that most trajectories are
smooth and continuous in nature. In the next section, we
address the question of what basis should be used for
predefining natural trajectories?

4 PREDEFINING THE TRAJECTORY BASIS

The smoothness in 3D trajectories is an inherent property of
most natural deforming objects. This smoothness can be
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Fig. 3. Duality between SVD shape and trajectory representation: The shape bases are equal to the trajectory coefficients as the trajectory bases are

equal to shape coefficients up to a scale. The top row shows sample frames in the data set. The second row shows the three trajectory bases (red

solid) and shape coefficients (blue dots) superimposed on one another. The third row shows the shape basis (blue dots) and trajectory coefficients

(red circle). The trajectory and shape coefficients were appropriately scaled for better visualization.



exploited to predefine the trajectory basis. There exist a
number of predefined bases which can approximate smooth
signals compactly. A few examples are the Hadamard
Transform basis, the Discrete Sine Transform (DST) basis,
DCT basis, and the Discrete Wavelet Transform (DWT)
basis. It is generally hard to decide which predefined basis
will be optimal for a specific problem. However, for certain
problems, their optimal predefined basis is known. For
example, it has been shown that DST and DCT are optimal
for poorly correlated and highly correlated first-order
Markov data, respectively [3]. Moreover, it is also possible
to find a sinusoidal transform as a good substitute for PCA
for higher order stationary random fields with arbitrary
cross correlations [3].

The optimality of DCT for Markov models has been
exploited in numerous applications, such as transform
coding of speech signals [46], speech recognition [47],
spectral document ranking [48], image compression [3], and
face recognition [49]. In [50], Li and Wang model the
motion capture data sets with a first-order Markov chain
for synthesizing human motion. Our experiments on
motion capture data sets also show the close resemblance
of PCA and DCT as trajectory bases. This resemblance
suggests that motion capture trajectories are well modeled
by Markov chains.

To empirically demonstrate the suitability of the DCT
basis for representing human motion, we perform an
experiment to compare them to the PCA basis estimated
from the CMU motion capture database [51]. It consists of
almost 4,000 examples from different actors with different
actions. The length and number of points in each data set
differ from others. In our experiment, we first make all of
the data sets zero mean by taking the world origin at the
center of the object. Then, we divide the data into smaller
nonoverlapping partitions of 256 frames. After this, we
concatenate the ðX;Y ; ZÞ components of the trajectories of
all the partitions into a single data matrix as column vectors.
The number of columns of the data matrix is about six

million. Finally, we compute the PCA basis of the data
matrix. Since the frame-length is taken to be 256, we obtain
256 basis vectors, which are then compared to the DCT
basis. Fig. 4 shows that the initial PCA basis, which contains
the most energy, very closely resembles the DCT basis.1 In
order to test the representation power of DCT, we choose
about 7,000 random 3D trajectories from the training data
set. Then, we project these trajectories on DCT and PCA
basis and reconstruct them using a varying number of bases
(K). We also do the same comparison with other ortho-
normal transforms: DST, Hadamard, and Haar. In Figs. 5a
and 5b, we plot the mean square error of PCA versus other
orthonormal transforms as the number of basis vectors, K,
varies. The plots show the close match of the DCT-based
reconstruction with that using the PCA, whereas other
transforms do not perform as well as the DCT. In Fig. 5c, we
plot the mean square error of PCA and DCT basis for a
motion capture data set of face. This plot also shows the
close match between DCT-based reconstruction and PCA-
based reconstruction.

In Section 3, we discussed the equivalence of basis and
coefficients with coefficients and basis in the dual spaces
and illustrated the equivalence for SVD basis. Applying the
same idea to DCT, we conclude that DCT coefficients can
also be thought of as shape bases as well. The illustration of
this equivalence is given in Fig. 6, where we plot the dual
shape basis or, equivalently, the trajectory coefficients
corresponding to the DCT trajectory basis for a motion
capture data set. The figure provides another example of
the duality between trajectory and shape basis.
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Fig. 4. The comparison of PCA (blue) and DCT (red) as the trajectory basis for the CMU motion capture data. Here, we plot the 1st-6th, 21st-26th,

and 41st-46th PCA and DCT basis. The plot shows the close resemblance between the two, especially for initial PCA basis. Some of the basis have

been multiplied by �1 for better visual comparison.

1. As the CMU Motion Capture database has not been postprocessed for
removing errors in the data, there exist a lot of unnatural discontinuities in
the trajectories which need to be removed. To clean the erroneous
discontinuous trajectories, we compute the difference between consecutive
values of all ðX; Y ;ZÞ components of the trajectory for each data set and
compute their mean (�) and standard deviation (�). Then, we discard those
trajectories for which the difference lies outside the interval of ½�� 10��. We
notice that the standard deviation threshold of 10 still leaves some
discontinuous trajectories, but they are very small as compared to the total
number of trajectories present in the training data.



5 STRUCTURE RECOVERY IN TRAJECTORY SPACE

In this section, we will show that by using predefined
trajectory basis, the nonrigid structure can be estimated. In

order to find the time-varying structure S, defined in (2), the
input data is the image observation matrix W, given in (1). W
can be decomposed as W ¼ RS, whereR is a 2F � 3F matrix,

R ¼
R1

. .
.

RF

2
64

3
75;

and Rt is a 2� 3 orthographic projection matrix. Using (15),

W can be factorized as

W ¼ R�A ¼ �A; ð16Þ

where � ¼ R� is a 3F � 3K matrix. The rank of W will be

at most 3K if K basis vectors in each of the X, Y , and Z

dimensions are used to construct �. This is a dual property
to the rank constraint defined by [2]. Using SVD, W can be

factorized as

W ¼ �̂Â;

where dimensions of �̂ and Â are 2F � 3K and 3K � P ,

respectively. In general, �̂ and Â will not be equal to � and

A, respectively, because this factorization is not unique: For

any invertible 3K � 3K matrix Q, �̂Q and Q�1A are also

valid factorizations. Hence, to recover metric structure, we

need to estimate the rectification matrix Q satisfying the

following constraints:

� ¼ �̂Q; A ¼ Q�1Â: ð17Þ

To compute the rectifying transform Q, consider the

structure of �, which can be written as

� ¼
�11R1 . . . �1KR1

..

.

�F1RF . . . �FKRF

2
64

3
75: ð18Þ

Equation (18) shows that instead of estimating the complete

matrix Q, it is sufficient to estimate only three columns of

Q. In order to see this, let us define Qkj to be the first
column triple of the matrix Q. In (17), multiplying �̂ with

Qkj instead of Q gives

�̂Qkj ¼
�11R1

..

.

�F1RF

2
64

3
75: ð19Þ

Equation (19) shows that camera rotations can be estimated

if Qkj is known. These rotations can be used to form the

matrix R. Once R is known, it can be multiplied with the

(known) trajectory basis matrix �3F�3K to recover the

matrix �2F�3K ¼ R2F�3F�3F�3K . Finally, the coefficients Â
can be estimated by solving the following overconstrained

linear system of equations:

�2F�3KÂ3K�P ¼W2F�P : ð20Þ

Therefore, instead of estimating the whole matrix Q, only

three columns are enough for estimating nonrigid structure.

Although, this approach reduces the number of unknowns in

the upgrading step from 9K2 to 9K, this is no longer a

Maximum Likelihood approach and is suboptimal. However,

our experiments show that it provides a reliable solution.
In order to estimate Qkj, orthonormality constraints of

camera rotations Ri can be exploited, following an
approach similar to [16]. Specifically, if �̂2i�1:2i denotes
the two rows of matrix �̂ at positions 2i� 1 and 2i, then we
have

�̂2i�1:2iQkjQ
T
kj�̂

T
2i�1:2i ¼ �2

i1I2�2; ð21Þ

where I2�2 is an identity matrix, giving three independent

constraints for each image i. Therefore, for F frames, we

have 3F constraints and 9K unknowns in Qkj. Hence, at
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Fig. 5. (a) The reconstruction accuracy (mean square error) on a random subset of motion capture trajectories using a different number of bases (K)

for different orthonormal transforms. (b) Zoomed-in view of the plot of Fig. 5a. The plots show that DCT is close to optimal for representing human

motion. (c) The reconstruction accuracy (mean square error) on a motion capture face data set using different number of bases (K) for the PCA and

DCT basis.

Fig. 6. The illustration of duality for DCT as a trajectory basis. In this

figure, we plot the first three DCT coefficients corresponding to a motion

capture data set consisting of two people. The plots show that (DCT)

trajectory coefficients can be thought of as a shape basis.



least 3K nondegenerate2 images are required to estimate

Qkj. Once Qkj has been computed using a nonlinear

minimization routine (e.g., Levenberg Marquardt), we can

estimate the rotation matrices, and therefore R, using (19).
The constraints given in (21) are dual to the orthonorm-

ality constraints considered by Bregler et al. [2], and are
computationally equivalent if the trajectory basis is un-
known. However, knowing the trajectory basis beforehand
leads to important advantages over [2]. First, the number of
available constraints generated by each image increases to
three, rather than two, since �i1 is known. Hence, the total
number of constraints given by (21) are 3F rather than 2F ,
resulting in more stable estimation of the 9K unknowns in
Qkj. Second, due to the predefined basis, the ordering of
image observations in the measurement matrix W becomes
important and is implicitly encoded in the optimization
process, whereas in the traditional approaches using the
shape basis, the ordering of image observations in W can be
changed arbitrarily. Hence, the predefined trajectory basis
better exploit the inherent constraints of the problem,
allowing the same basis to work for many different types
of natural motions. Finally, the availability of predefined
basis improves the numerical stability of structure estima-
tion. If the basis and the coefficients were to be estimated,
the reconstructed structure, which is a product of the
coefficients times the basis, will contain the accumulated
numerical error of both. In our approach only the coeffi-
cients are being estimated, hence allowing us to reconstruct
more complicated nonrigid motions with less error.

It is also pertinent to discuss whether the constraints
given in (21) are sufficient to obtain a unique solution of
the 3D structure. According to Xiao and Kanade [52],
orthonormality constraints are inherently ambiguous and
cannot be used to recover nonrigid structure in the absence
of additional constraints. They linearized the quadratic
terms in the orthonormality constraints by considering G ¼
QkjQ

T
kj and showed that there exist ambiguous solutions of

G. Akhter et al. observed that G should be of rank 3
because Qkj is of rank 3. They derived the solution space of
G under the rank 3 constraint, and showed that all solutions

lying in the solution space give unique structure recovery
up to a 3� 3 rotation.

6 RESULTS

The proposed algorithm has been validated quantitatively on
motion capture data over different actions and qualitatively
on video data. We have tested the approach extensively on
highly nonrigid human motion, such as walking, dancing,
handstands, volleyball digs, and karate moves. Figs. 7 and 8
show a few sample reconstructions for different actors. As
mentioned earlier, we choose the DCT basis for the trajectory
space representation for all experiments in this paper. In
subsequent experiments, we compare our approach with [6]
and [52] (code kindly provided by the respective authors).
The results, data, and the code used to produce the results are
all shared at http://cvlab.lums.edu.pk/nrsfm.

For quantitative evaluation of the reconstruction accu-
racy, we use five different actions from the CMU motion
capture database (drinking, pickup, yoga, stretch, and
dance actions), shark, and face sequence available on the
project website of Torresani et al. [7] and pants sequence
by White et al. [53]. We also generate a multiple rigid
body sequence by simulating points on three rigidly
moving cubes. We generate synthetic camera rotations
and project 3D data using these rotations to generate
image observations. The camera rotation is 5 degrees per
frame around the z-axis, while the overall camera motion
is oscillatory with a pan of �45 degrees. We do not rotate
the camera for the dance, shark, and face sequences since
the object itself is rotating in these sequences. In our
experiments on highly nonrigid objects, including hand-
stands, karate moves, and volleyball digs, we simulate
random camera motions to generate images. We normalize
the structure, so that the average standard deviation of the
structure matrix S is unity, to make comparison of error
across data sets more meaningful.

Table 1 shows a quantitative comparison of our method
with the shape basis approach of Torresani et al. [6] and Xiao
and Kanade [52]. Torresani et al. proposed two algorithms in
[6], named EM-PPCA and EM-LDS. We use EM-LDS,
because it exploits both shape compactness and trajectories
smoothness. This table shows both the camera rotation
estimation error and structure reconstruction error. The
estimated structure is valid up to a 3D rotation and
translation, and the estimated rotations also have a 3D
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2. Degenerate images are the images of an object which do not span the
complete 3D space.

Fig. 7. Reconstruction accuracy for three actors. The X-coordinate
trajectories for three different points on the actors are shown. The
approximation error introduced by DCT projection has a smoothing
impact on the reconstruction. Red lines indicate ground truth data and
blue lines indicate reconstructed data.

Fig. 8. Structure recovery for multiple walk data set containing eight
people with different walking styles. (a) The recovered structure (gray
circles) and ground truth (black dots) for one frame. (b) The recovered
3D trajectories (gray solid line) and ground truth trajectories (black
dotted line) of some points of a walk in the data set. It also shows the
recovered structure for the starting and ending frame.



rotation ambiguity. We therefore align them for error
measurement using the procrustes method. The error
measure for camera rotations is the average Frobenius norm
difference between the original camera rotations and the
estimated camera rotations. For structure evaluation, we
compute the per frame per point euclidean distance between
original 3D points and the estimated 3D points. Table 1 also
shows the values of K used in our method and Torresani
et al.’s method. We choose K by exhaustively trying out
different numeric values between 2 and 13, and selecting the
best one. We are not reporting K for Xiao and Kanade
because their method automatically estimates the number of
bases. Figs. 8, 9, 10, and 11 show the results on multiple
walks, Stretch, Dance, and Pants sequences.

Finally, to test the proposed approach on real data, we
use a face sequence from [52], a sequence from the movie
“The Matrix,” a sequence capturing two rigidly moving
cubes, a sequence of a toy dinosaur moving nonrigidly, and
a cloth sequence. For the last four sequences, the image
points are tracked in a semiautomatic manner, using the
approach proposed in [54], supplemented with manual
correction. We show the resulting reconstructions in Figs. 12
and 13 and compare against the reconstructions obtained
using the implementations of Torresani et al. [6] and Xiao
and Kanade [52]. These figures show that Xiao and
Kanade’s method works reasonably well on the face and
dinosaur sequence. Torresani’s EM-LDS works on matrix
sequence and to some extent on face sequence, where it
only recovers the rigid component. On the other hand,
proposed trajectory basis works reasonably well on all of
these sequences. The value of K in EM-LDS is equal to 2 for
all of the sequences. We observe that, for K greater than 2,
the results get worse. In the trajectory basis approach, we
use the values of K as 10, 12, 3, 2, 2 in the cloth, dinosaur,
matrix, face, and cubes sequences, respectively.

7 DISCUSSION

In general, nonrigid structure from motion is an ill-posed
problem with more unknowns in the structure matrix, S,
than the observations in measurement matrix, W. To make
the problem tractable and numerically stable, the solution of

3D structure S is constrained to lie in a compact subspace,
spanned by a small number of basis shapes in previous

literature. Additional constraints have also been proposed
by several researchers as discussed in Section 2.

We have taken a dual view of the problem by
constraining the 3D structure to a subspace spanned by
basis trajectories. Since smoothness of trajectories is a
ubiquitous property of natural motions, it allows us to use
the same subspace for a variety of sequences. The resulting
factorization problem is optimal up to an affine transform in
3K space. This is because if the basis is unknown, as is
usually the case with the shape basis, the nonrigid structure
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Fig. 9. Structure recovery for the Stretch data set: The black dots are the

ground truth points, while the gray circles are the reconstructions by the

three methods, respectively.

TABLE 1
The Quantitative Comparison of the Proposed Algorithm

with the Techniques Described in Xiao and Kanade [52] and Torresani et al. [6]

1 Erot is the average Frobenius difference between original rotations and aligned estimated rotations.
2 E� is the average distance between original 3D points and aligned reconstructed points.



from motion problem is a trilinear problem—variable
interactions occur between rotations, coefficients, and basis.
However, if the basis is known, as in the DCT trajectory
space, the nonrigid structure from problem is bilinear—
variable interactions occur only between rotations and
coefficients. Current methods solve a trilinear estimation
problem by successively solving two bilinear problems, by
grouping two sets of variables together, applying SVD, and
then applying further optimization to the subblock grouped
variables. SVD, which inherently is a bilinear decomposi-
tion, gives us the optimal decomposition for a bilinear
problem, which is what our approach considers, whereas
using SVD to solve a trilinear decomposition (in two steps)
is a relaxation and not optimal.

The key relationship which determines successful re-
construction is the one between the amount of camera

motion and the degree of deformation of the object, the
latter being measured by the number of basis K needed to
approximate it. This relationship is analogous to our
understanding of stereo, where numerical stability in-
creases with increasing baseline. In nonrigid structure from
motion, we have found the solution to be more stable as the
amount of per-frame camera motion increases. In other
words, more complicated nonrigid motions (those that need
a higher K for reasonable representation) can be recon-
structed if the average per-frame camera motion is larger.

As a practical demonstration of the impact of per-frame
camera motion on reconstruction stability, we syntheti-
cally constructed various magnitudes of per-frame camera
rotation and constructed � for different values of K. The
first row of Fig. 14 shows the reconstruction stability,
measured by the condition number of �T�, as K is
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Fig. 10. The dance sequence from the CMU motion capture database. The black dots are the ground truth points, while the gray circles are the

reconstructions by the three methods, respectively.

Fig. 11. Pants sequence: The first row shows the ground truth structure in four selected frames, each with two views of the object, and the second

row is our reconstruction.



varied between 2 and 8, for 200, 400, and 800 frames, at
different angular velocities per frame. The plots confirm
intuition—the smaller the degree of object deformation
and the larger the camera motion, the better the condition
number tends to be. For further verification, we computed
the reconstruction error for a motion capture walk
sequence. We assumed the camera rotations to be known
and estimated the nonrigid structure using (18), (20), and
(15), as discussed in Section 5. The reconstruction error,
shown in the second row of Fig. 14, generally follows the
same trend as that of condition number of �T�, for a
range of appropriate values of K, except that we also see
that for a larger value of K, we get lower reconstruction
error if optimization is stable. This understanding is also
expected to be valid for shape basis since the role of
coefficients and basis is interchanged if ideal rotations and
coefficients were known and shape basis were to be
estimated, exactly similar results would be generated due
to the duality theorem. This hints at the possibility that
this may be a fundamental limitation of the nonrigid
structure from motion problem. The more the object
deforms, the more the motion needed to constrain the
solution of the structure. In the limiting case of no
deformation (rigid), only two views with small disparity
would be enough.

It is also instructive to study the impact of varying K as
an independent variable, on the estimation of camera
rotations and structure. Fig. 15 shows the effect of changing
K for four different motion capture data sets. For certain K,
the nonlinear optimization may not always converge, as
indicated in Figs. 15a and 15e. However, in general,
neighboring values of K do not make much of a difference
on the estimation of camera rotation, and also result in
similar structure reconstruction error if the per-frame
camera motion is sufficiently large (Fig. 15b, 15c, 15d, 15f,
15g). For slow camera motion, the reconstruction error gets
progressively worse as K increases, as shown in Figs. 15f
and 15g. This is presumably because the increase in
allowable nonrigidity for larger K and the corresponding

increase in unknowns needs to be matched by more
stringent constraints imposed by faster camera motion.

It is also relevant to mention here that while the bilinear
relationship between unknowns results in an optimal
factorization through SVD, the nonlinear solution of the
metric upgrade using only first three columns of Q is
nonoptimal. It should be possible to formulate a maximum
likelihood solution involving all terms of Q. However, in
our approach, we chose to prefer the reduced number of
unknowns in Qkj, which contains just 9K unknowns rather
than 9K2 in the full Q matrix.

Finally, using a predefined basis may not result in a
highly compact representation on every sequence compared
to data-dependent basis. Hence, there may be a need to
increase the number of basis, K, for certain sequences to
achieve a reasonable representation. While a higher K
implies lesser numerical stability, it is counterbalanced in
our approach by the reduction in unknowns due to the
availability of predefined basis. Quantitative and qualitative
evaluation of our method shows that the advantage of the
latter is significant and having a predefined basis improves
the numerical stability of the solution. This is especially
apparent in sequences which have a high nonrigidity.

8 CONCLUSIONS

We show that structure recovery from motion information
is possible for smoothly deforming objects without requir-
ing prior knowledge of the object. We propose the trajectory
basis to exploit this smoothness and show that our
approach is dual to the traditional approach of expressing
nonrigid structure as a linear combination of basis shapes.
Unlike the traditional approach and its variants, which
require the learning of object-specific shape basis, for our
approach trajectory basis can be predefined. We demon-
strate that the DCT basis can compactly represent the
motion of a wide variety of natural deformations, giving
near optimal compaction for human motion. Using DCT as
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Fig. 12. Results on the cloth sequence. The first row shows a few frames from the sequence. The rest of the rows are the structure reconstruction.



an object independent basis has the advantage of a smaller

number of unknowns and more stable estimation. We

report satisfactory results on dynamic data sets, such as

piecewise rigid motion, facial expressions, actors dancing,

walking, and performing yoga. Our experiments demon-

strate the inherent relationship between camera motion,

degree of object deformation, and reconstruction stability.

Reconstruction stability increases as the camera motion

increases or the degree of deformation decreases. Future

directions of research are to explore better techniques of

optimization and developing a synergistic approach to use

both the shape and trajectory bases concurrently.
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Fig. 13. Results on the Dinosaur, Matrix, face, and Cubes sequences. K was set to 12, 3, 2, and 2, respectively.
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Fig. 14. The effect of increasing camera motion on reconstruction stability. First row: Reconstruction stability is measured in terms of the condition

number of matrix �T� with different values of K and different values of F . Second row: The reconstruction error on a walk data set using known

rotations with different values of K and different values of F . Synthetic rotations were generated by revolving the camera around the z-axis and

camera motion was measured in terms of the angle the camera moved per frame.

Fig. 15. The estimation error in camera rotations (Erot) and structure recovery (E�) for different values of K per frame camera motion (denoted by �

here). (a)-(d) Rotation estimation and (e)-(h) structure estimation error for the yoga, stretch, pickup, and drink data sets, respectively.
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